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Motivation Exascale computing promises to address many scientific and engineering problems of national
interest by facilitating computational simulation of physical phenomena at tremendous new levels of accu-
racy, fidelity, and scale, as well as unprecedented capabilities for high-level analysis such as uncertainty
quantification for today’s petascale computational simulations. Uncertainty quantification is a broad term
for a variety of methodologies such as uncertainty propagation, model calibration, and error estimation,
but here we are primarily concerned with the forward propagation of model input data uncertainty to sim-
ulation output quantities of interest. There are many uncertainty propagation approaches such as random
sampling [4, 9, 13, 14, 15], stochastic collocation [2, 8, 16, 17, 20], and stochastic Galerkin [5, 6, 21] that
have been studied in the literature, most of which involve sampling simulations at numerous realizations of
the uncertain input data. Unfortunately all of them generate extreme computational burdens when applied to
most problems of interest, when attempting to accurately quantify high-dimensional probabilities of events.
It is not unusual to require thousands to millions of samples to achieve the level of accuracy desired in
many uncertainty quantification problems, which is out of reach for most large-scale simulations on existing
petascale computing architectures.

Nearly all existing uncertainty propagation methodologies wrap around deterministic simulation codes,
a good example is sampling-based methods which repeatedly call a deterministic simulation code for differ-
ent values of the model inputs. Since these samples are independent, they can easily be run in parallel on
disjoint subsets of the available compute nodes. However it is unlikely an exascale computer will provide
enough concurrency for a thousand-fold increase in concurrent sample evaluations for uncertainty propa-
gation applied in this manner. Power and cooling limitations will favor compute nodes with dramatically
increased floating-point capacity rather than substantially increased node counts [1], and thus increasing
concurrent sample evaluation will require executing each sample on a smaller number of compute nodes
or executing multiple samples simultaneously on each compute node. For reasons similar to those outlined
below, the first approach is unlikely to be effective. The question for this paper is how to implement the
second approach effectively given likely exascale architectural considerations, so that the rigorous, accurate
uncertainty quantification capabilities promised by exascale can be achieved.

Approach It is expected that node-level floating-point capacity will increase by a factor of 1,000 to 10,000
without increases in processor clock speed but rather increased concurrency through thousands of simple
processor cores and with a memory capacity increase by only roughly a factor of 100 [1]. This suggests
multiple samples should be executed simultaneously on each node by collections of threads sharing common
data, and implies that at least a portion of the “uncertainty propagation loop” must be embedded within the
simulation code itself. Furthermore it is expected that memory latency will not decrease significantly and
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(a) Sparse matrix-vector floating-point
throughput for embedded stochastic
Galerkin compared to a sequence of
scalar matrix-vector multiplications (Intel
Sandybridge with 32 cores).
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(b) Aggregate MPI communication for mul-
tiple samples of an explicit dynamics calcu-
lation (Cray XK7 with 40 MPI ranks and 8
threads/rank).

Figure 1

latency hiding through instruction-level parallelism and out-of-order exe-
cution will be replaced by hardware multi-threading and vectorization [1].
Thus it is imperative that calculations executing on these nodes ex-
hibit good data locality as well expose sufficient fine-grained parallelism,
which unfortunately is not the case for many simulations today (particu-
larly those involving sparse linear algebra [3, 12]).

However we believe these challenges can be addressed by further
embedding portions of the uncertainty loop at the lowest levels of the
simulation code by replacing each scalar datum in a calculation with
an array for the uncertainty representation of that datum, such samples
in a sampling-based method or polynomial coefficients in a stochastic
Galerkin-type method. Then any operations on that datum can be trans-
lated to parallel operations on the uncertainty array, both improving local-
ity and exposing additional fine-grained parallelism. For example, Fig-
ure 1a displays floating-point throughput for sparse matrix-vector multi-
plication with scalars replaced by polynomial coefficients in a stochastic
Galerkin method, compared to the standard approach of a sequence of
scalar matrix-vector multiplications for increasing stochastic discretiza-
tion size [19]. Since the working set dictated by the uncertainty array
resides in L1 cache, much higher floating-point throughput is achieved.
Similarly this approach enables amortization of expensive operations
such as an MPI message across multiple pieces of contiguous data, for
example Figure 1b displays the aggregate MPI communication time for
multiple samples of an explicit dynamics calculation. Since the messages for multiple realizations are in-
corporated into one message for the ensemble, total communication time is reduced. Finally this approach
enables new algorithmic approaches that reuse data and calculations across uncertainty representations to
reduce aggregate simulation cost, e.g., reuse hierarchical basis information to improve solver convergence
on the next level of a multi-level stochastic approximation, reuse of mesh calculations that don’t depend on
uncertain input data or reuse of solvers and preconditioners across an ensemble [10, 11].

Challenges While this approach could enable more concurrency in the aggregate uncertainty propaga-
tion calculation for likely exascale architectures, there are a number of challenges that must be overcome
for these ideas to be useful for practical scientific problems. First incorporating these methods directly
into simulations codes requires considerable programming effort, as well as cross-domain knowledge be-
tween simulation technologies and uncertainty quantification methodologies. However we and others have
demonstrated that code transformation techniques based on automatic differentiation can alleviate much of
this difficulty, particularly if they are incorporated early into the code design cycle [7, 18]. Second, the
concept of propagating multiple samples simultaneously at the scalar level of the simulation is predicated
on the assumption that the code paths for these samples do not diverge greatly, otherwise no or possibly
negative benefit is achieved. However many realistic scientific problems exhibit some form of non-smooth
behavior that put the simulation into different regimes depending on the values of the uncertain inputs. Thus
careful research is needed connecting these ideas to high-level adaptive uncertainty propagation methods
that decide when and how to group samples to be propagated together. Finally, this form of uncertainty
propagation generates linear and nonlinear problems with a special Kronecker-product structure, and little
research has been undertaken to develop solution and preconditioning algorithms that exploit it, nor have
sparse partitioning, reordering, and balancing algorithms for the higher-order tensors generated by these
approaches been developed to most effectively leverage the parallel resources of an exascale architecture.
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